K&/ K| mEf——7FLERETE

NEREH: BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of
hypoxia and histone deacetylase inhibitors
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Figure 3. Down-regulation of BRCA1 promotes
A SiRNA =+ 151BRCAT breast cancer stem cell characteristics. (A) BRCA1

§ e was down-regulated by RNA inference in the
ok BRCA1 g"“ == BRCA1-competent SKBR-3 breast cancer cells,
i ';M which was confrmed by Western blot and qRT-
150 kDa= [T E ' PCR (n=3). (B) Expression of breast cancer stem
— Vinculin F . cell-associated genes in SKBR3+siBRCAL cells
= were measured by qRT-PCR (n=3). (C) CD44
B T TR ¢ o DL promoter activity in SKBR3+siBRCA1 cells was
§ SBROAY % measured using luciferase assay (n=3). Te cell
§e g 1 I surface CD44 levels in SKBR3+siBRCAI cells
g o E| were analyzed by fow cytometry with
E § & representative fow cytometry data shown in (D) and
Ninll g, . quantitation in (E, n=3). Te ALDH activity in
o ABH o L SKBR3+siBRCAT1 cells were analyzed by fow
=1y Control woJ5iContral E . o cytometry with represel’ltat’ive fow cytometry data
‘ " ! shown in (F) and quantitation in (G, n=3). Te DEAB
§” _ treated cells were used as negative control.
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- ﬁ&*ﬁ‘ @ :: s Figure 6. BRCA1 status and hypoxia determine breast cancer
A R T cell response to the histone deacetylase inhibitor SAHA.
b iR HCC1937+4BRCAL1 cells were treated with 1pM SAHA under
1501 7 20%0, either normoxia or hypoxia. ALDH activities (ALDEFLUOR)
§ il were measured at the indicated time following incubation
§ (n=3). Te DEAB treated cells were used as negative control.
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Figure 5. BRCAL affects hypoxia-induced breast cancer cell stemness. HCC1937+BRCA1 cells were either maintained under ambient
tissue culture conditions (20% O-) or under hypoxia (1% Oz). Their ALDH activities were measured at the indicated time. Te
representative fow data are shown in (A) and quantitation in (B, n=3). SKBR3+siBRCA1 cells were maintained under normoxia or
hypoxia and their ALDH activities (ALDEFLUOR) were measured at the indicated time with the fow data shown in (C) and
quantitation in (D, n=2). Te DEAB treated cells were used as negative control.
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