低氧/厌氧产品案例——乳腺癌干细胞

文章题目: BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of hypoxia and histone deacetylase inhibitors

在低氧和组蛋白去乙酰化酶抑制剂条件下, BRCA1 调节乳腺癌细胞干细胞特性

文章出处: Scientific reports vol. 9,1 9702. 4 Jul. 2019.美国耶鲁大学医学院放射治疗学系

工作站使用情况: Ruskinn Invio2 400

使用气体浓度:低氧(1%O2,5%CO2,95N2)

主要内容: 肿瘤细胞的干细胞特性对于肿瘤恶性进展和克隆进化至关重要。肿瘤细胞由复杂的 机制决定,包括细胞内在途径和来自肿瘤微环境的应激信号。本研究发现肿瘤抑制基因 BRCA1 是一种参与 DNA 修复和表观遗传调控的多功能蛋白,在肿瘤干细胞(CSC)样特征的调控中起着 关键作用。 下调 BRCA1 促进乳腺癌细胞中肿瘤干细胞特性,BRCA1 重建的肿瘤细胞比 BRCA1 缺乏的细胞对组蛋白去乙酰化酶(HDAC)抑制剂诱导的干细胞丢失更敏感。此外,低氧 优先阻断 HDAC 抑制剂诱导的乳腺癌细胞的分化,表明 BRCA1 和肿瘤乏氧应被视为可能影响 HDAC 抑制剂治疗效果的潜在重要临床参数。

Figure 3. Down-regulation of BRCA1 promotes breast cancer stem cell characteristics. (A) BRCA1 was down-regulated by RNA inference in the BRCA1-competent SKBR-3 breast cancer cells, which was confrmed by Western blot and qRT-PCR (n=3). (B) Expression of breast cancer stem cell-associated genes in SKBR3±siBRCA1 cells were measured by qRT-PCR (n=3). (C) CD44 promoter activity in SKBR3±siBRCA1 cells was measured using luciferase assay (n=3). Te cell surface CD44 levels in SKBR3±siBRCA1 cells were analyzed by fow cytometry with representative fow cytometry data shown in (D) and quantitation in (E, n=3). Te ALDH activity in SKBR3±siBRCA1 cells were analyzed by fow cytometry with representative fow cytometry data shown in (F) and quantitation in (G, n=3). Te DEAB treated cells were used as negative control.

Figure 6. BRCA1 status and hypoxia determine breast cancer cell response to the histone deacetylase inhibitor SAHA. HCC1937 \pm BRCA1 cells were treated with 1 μ M SAHA under either normoxia or hypoxia. ALDH activities (ALDEFLUOR) were measured at the indicated time following incubation (n=3). Te DEAB treated cells were used as negative control.

Figure 5. BRCA1 affects hypoxia-induced breast cancer cell stemness. HCC1937 \pm BRCA1 cells were either maintained under ambient tissue culture conditions (20% O₂) or under hypoxia (1% O₂). Their ALDH activities were measured at the indicated time. Te representative fow data are shown in (A) and quantitation in (B, n=3). SKBR3 \pm siBRCA1 cells were maintained under normoxia or hypoxia and their ALDH activities (ALDEFLUOR) were measured at the indicated time with the fow data shown in (C) and quantitation in (D, n=2). Te DEAB treated cells were used as negative control.

沉默 BCRA1 可上调肿瘤干细胞相关标志物 CD44、ALDH1A3 和 OCT4 的表达,下调 CD24 的表达,表明下调 BCRA1 表达可促进乳腺癌肿瘤干细胞特性(图 3);低氧(1%O₂)促进乳腺癌肿瘤干细胞特性,BCRA1 抑制低 氧诱导的乳腺癌肿瘤干细胞特性(图 5);在常氧条件下,BCRA1 活性强的乳腺癌细胞对组蛋白去乙酰化酶抑制 剂 SAHA 诱导的干性丧失更敏感,而 BCRA1 缺陷的乳腺癌细胞则不那么敏感,而低氧对 BCRA1 活性强的乳腺癌 干细胞干性有更强的保护作用(图 6)。

北京隆福佳生物科技有限公司 联系电话: 010-88693537