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XEBHE: Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial

reactive oxygen species production in diabetes
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A B Figure 1. Hypoxia increases circulating ROS in

* patients with diabetes but not in control subjects
without diabetes. Healthy controls (A) and
subjects with type 1 diabetes (B) were exposed
to intermittent hypoxia for 1 hr. Peripheral
blood was taken before (Oh) and after (1h)
hypoxia exposure. ROS levels were analyzed
using Electron Paramagnetic Resonance (EPR)
Spectroscopy with CPH spin probes (n = 10—
13). Data are represented as mean £ SEM. *, p
< 0.05 analysed using unpaired two-sided
Student’s t-test. This figure has one figure
supplement
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Figure 3. High glucose levels induce mitochondrial ROS overproduction in hypoxia, which can be rescued by
promoting HIF-1 function. (A) Mitochondrial ROS levels were measured as mitosox intensity in mIMCD-3 cells
cultured in normal (5.5 mM) or high (30 mM) glucose media in normoxia (N) or hypoxia (H) for 24 hr in the
presence of DMOG or vehicle (n = 5). (B-D) mIMCD-3 cells were transfected with von Hippel-Lindau tumour
suppressor (VHL) or control (Ctrl) siRNA, and exposed to hypoxia (H) and 30 mM glucose for 24 hr. VHL gene
expression (B, n = 3), endogenous HIF-1a expression (red) and DAPI staining (blue) (C) and mitochondrial ROS
levels (D, n = 5) were assessed using quantitative RT-PCR, fluorescent immunocytochemistry and flow cytometry,
respectively. (E and F) mIMCD-3 cells were transfected with plasmids encoding GFP or GFP-HIF-1a,and exposed to
hypoxia and 30 mM glucose for 24 hr. (E) Expression of GFP and GFP-HIF-1a (green) were detected using confocal
microscopy. The nuclear HIF-1a expression was confirmed by immucytochemistry using anti-HIF-1o antibody (red).
Nuclei were stained blue with DAPI. (F) Mitochondrial ROS levels are shown (n = 6). The mitosox intensity of cells
cultured under control conditions were considered as 100%.
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